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Abstract. The theory of gap functions, developed in the literature for variational inequalities, is
extended to a general equilibrium problem. Descent methods, with exact an inexact line-search rules,
are proposed. It is shown that these methods are a generalization of the gap function algorithms for
variational inequalities and optimization problems.
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1. Introduction

The gap function approach, which has widely been studied for variational in-
equalities (for short, V I ), can be extended to an equilibrium problem (for short,
EP ):

find y∗ ∈ K s.t. f (x, y∗) ≥ 0, ∀x ∈ K, (EP )

where f : X × X −→ IR, with f (x, x) = 0, for all x ∈ K, and K is a convex
subset of the set X ⊆ IRn.

It is well known (see e.g. [3]) that (EP ) provides a general setting which in-
cludes several problems as V I , complementarity problems, optimization problems,
etc. For example, if we define f (x, y) := 〈F(y), x − y〉 then EP collapses into
the classic V I :

find y∗ ∈ K s.t. 〈F(y∗), x − y∗〉 ≥ 0, ∀x ∈ K, (V I )

where F : X −→ IRn, and 〈·, ·〉 is the scalar product in IRn. If f (x, y) := J (x) −
J (y) then EP is equivalent to the optimization problem

min
x∈K

J (x) s.t. x ∈ K,

where J : X −→ IR. We refer to [3] and references therein for an exhaustive survey
concerning the main applications and existence results of a solution of the problem
EP .

We start our analysis by proving that (EP ) is equivalent to the minimax problem

min
y∈K

sup
x∈K

[−f (x, y)], (1)
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provided that the optimal value in (1) is zero; this leads to consider the function

g(y) = sup
x∈K

[−f (x, y)] (2)

whose minimization on the set K coincides with the problem (1). Peculiar proper-
ties of the function g are the non-negativity on the set K and the fact that g(y∗) =
0 if and only if y∗ is a solution of EP . The functions which fulfil the above
mentioned properties form the class of the gap functions associated to EP . The
function (2), that in general is not differentiable, has been analysed in the case of a
variational inequality problem; Zhu and Marcotte [22] proved that

g(y) := max
x∈K

[〈F(y), y − x〉 − H(x, y)], (3)

is a continuously differentiable gap function for V I under the following conditions:
H(x, y) : X×X −→ IR, is a non–negative, continuously differentiable, strongly

convex function on the convex set K with respect to x, such that

H(y, y) = 0 and H ′
x(y, y) = 0, ∀y ∈ K.

In the particular case where H(x, y) := 1
2〈x − y,M(x − y)〉, with M symmetric

and positive definite matrix of order n, it is recovered the gap function introduced
by Fukushima [7].

It is shown [13] that the results obtained in [22, 7] are closely related to the
introduction of an auxiliary V I . Following the line developed in [13, 14], where
it is proved that EP is equivalent to the auxiliary equilibrium problem (for short,
AEP ):

find y∗ ∈ K s.t. f (x, y∗) + H(x, y∗) ≥ 0 ∀x ∈ K,

we will show that the minimax formulation of AEP allows us to define a con-
tinuously differentiable gap function for EP that collapses into (3) when EP

represents the problem V I . A direct consequence of the analysis is the definition of
line search algorithms for the solution of EP based on the minimization of suitable
gap

functions. These algorithms are a generalization of those proposed by Fukushima
for V I [7]. The analysis of the gap function approach for EP allows to extend the
applications to further variational formulations as the Minty Variational Inequality
[8]:

find y∗ ∈ K s.t. 〈F(x), x − y∗〉 ≥ 0, ∀x ∈ K (MV I )

which, under the hypotheses of continuity and pseudomonotonicity of the operator
F , is equivalent to V I [12].

MV I can be obtained as an EP defining f (x, y) := 〈F(x), x − y〉.
We recall the main notations and definitions that will be used in the sequel.
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Let Y ⊆ IRn. A point to set map A : X −→ 2Y is upper semicontinuous (u.s.c.)
according to Berge at a point λ∗ ∈ X if, for each open set B containing Aλ∗, there
exists a neighborhood V of λ∗ such that

Aλ ⊂ B, ∀λ ∈ V.

A function f : X × X −→ IR is said strongly monotone on K ⊆ X, with
modulus a > 0, iff:

f (x, y) + f (y, x) ≤ −a‖y − x‖2, ∀x, y ∈ K.

When f is differentiable with respect to x (resp. to y), we will denote by f ′
x (resp.

f ′
y) the gradient of f with respect to x (resp. to y).

A function h : X −→ IR is said strongly convex on K with modulus a > 0 iff,
∀x1, x2 ∈ K and ∀λ ∈ [0, 1],

h(λx1 + (1 − λ)x2) ≤ λh(x1) + (1 − λ)h(x2) − a[λ(1 − λ)/2]‖x1 − x2‖2.

We will say that the mapping F : X −→ IRn is monotone on K ⊆ X iff:

〈F(y) − F(x), y − x〉 ≥ 0, ∀x, y ∈ K;
it is strictly monotone if strict inequality holds ∀x 
= y.
We will say that the mapping F is strongly monotone, with modulus a > 0, on K

iff:

〈F(y) − F(x), y − x〉 ≥ a‖y − x‖2, ∀x, y ∈ K;
F is Lipschitz continuous with modulus L > 0 over K iff

‖F(x) − F(y)‖ ≤ L‖x − y‖, ∀x, y ∈ K.

If f : X −→ IR is continuously differentiable and if f ′ is Lipschitz continuous
on K, with modulus L, then we have:

f (x) − f (y) ≤ 〈f ′(y), x − y〉 + (L/2)‖x − y‖2, ∀x, y ∈ K.

2. Gap functions for equilibrium problems

The starting point of our analysis is the introduction of suitable equivalent formula-
tions of the equilibrium problem: the first one is the classic minimax formulation of
EP , while the second is a regularization of EP obtained by adding to the function
f (x, y) the additional term H(x, y).

The following preliminary result (see, e.g., [13]) states the minimax formulation
of EP .
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LEMMA 2.1 Suppose that f (x, x) = 0, ∀x ∈ K. Then, the following statements
are equivalent:
i) there exists y∗ ∈ K s.t. f (x, y∗) ≥ 0, ∀x ∈ K.

ii) miny∈K supx∈K [−f (x, y)] = 0.

The previous formulation leads to the introduction of the gap function associ-
ated to the problem EP , a natural extension of the one considered for variational
inequalities [1].

DEFINITION 2.1 Let K ⊆ X. The function p : X −→ IR is a gap function for
EP iff:
i) p(y) ≥ 0, ∀y ∈ K;
ii) p(y) = 0 and y ∈ K iff y is a solution for EP .

It is immediate to observe that

g(y) := sup
x∈K

[−f (x, y)] (4)

is a gap function for EP .
When EP represents the problem V I we recover the gap function

p(y) := sup
x∈K

〈F(y), y − x〉,

introduced by Auslender [1]. This function, in general, is not differentiable; the
problem of defining a continuously differentiable gap function for V I was first
solved by Fukushima [7] whose approach was generalized by Zhu and Marcotte
[22]. We will show that the results obtained in [7, 22] are closely related to the
introduction of an auxiliary equilibrium problem that allows to regularize the ori-
ginal EP so that the gap function (4) associated to the AEP is continuously
differentiable. First of all, we will state sufficient conditions that guarantee the
differentiability of (4).

PROPOSITION 2.1 Assume that the following conditions hold:
i) f (x, y) is a strictly convex function with respect to x, for every y ∈ K;
2i) f is differentiable with respect to y, for every x ∈ K and f ′

y is
continuous on K × K;

3i) the supremum in (4) is attained for every y ∈ K. Then g(y) := supx∈K

[−f (x, y)] is a continuously differentiable gap function for EP and its gradient is
given by

g′(y) = −f ′
y(x(y), y), (5)

where x(y) := argminx∈Kf (x, y).
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Proof. Since f (x, y) is strictly convex with respect to x then there exists a unique
minimum point x(y) of the problem minx∈K f (x, y). Applying Theorem 4.3.3 of
[2], we obtain that x(y) is u.s.c. according to Berge at y and, being x(y) single-
valued, it follows that it is continuous at y.
Since f ′

y is continuous, from theorem 1.7, chapter 4 of [1], it follows that

g′(y) = −f ′
y(x(y), y).

From the continuity of f ′
y and x(y) it follows that g′(y) is continuous at y. �

REMARK 2.1 Obviously (3i) is fulfilled if f (x, y) is l.s.c. with respect to x and
the set K is compact, or if f (·, y) is strongly convex. Proposition 2.1 is still valid
if f (·, y) is assumed to be strictly quasi-convex [19].

The hypothesis of strict convexity for the function f (·, y) is not always fulfilled:
for example, for the problem V I , f (·, y) is linear. We can overcome this difficulty
by introducing an auxiliary equilibrium problem, adding to the operator f a strictly
convex term H(·, y).

Let H(x, y) : X × X −→ IR be a differentiable function on K with respect to
x, and such that:

H(x, y) ≥ 0, ∀(x, y) ∈ K × K; (6)

H(y, y) = 0, ∀y ∈ K; (7)

H ′
x(y, y) = 0, ∀y ∈ K. (8)

The auxiliary equilibrium problem (AEP ) consists in finding y∗ ∈ K such that

f (x, y∗) + H(x, y∗) ≥ 0, ∀x ∈ K.

The following result proves the equivalence between EP and AEP .

PROPOSITION 2.2 [14] Let f (x, y) be a convex differentiable function with
respect to x, ∀y ∈ K. Then y∗ is a solution of EP iff it is a solution of AEP .

Therefore we can apply Proposition 2.1 to AEP in order to obtain a continu-
ously differentiable gap function for EP .

THEOREM 2.1 Suppose that K is a closed subset in X, f (x, y) is a differentiable
l.s.c. convex function with respect to x, for every y ∈ K, differentiable with respect
to y and that f ′

y is continuous on K × K. Let H(x, y) : X × X −→ IR be a
continuously differentiable function on K × K, strongly convex with respect to x,
for every y ∈ K, and such that (6), (7) and (8) hold. Then

h(y) := max
x∈K

[−f (x, y) − H(x, y)] (9)
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is a continuously differentiable gap function for EP and its gradient is given by

h′(y) = −f ′
y(x(y), y) − H ′

y(x(y), y),

where x(y) := argminx∈K[f (x, y) + H(x, y)].

Proof. By Proposition 2.2 we obtain that EP is equivalent to AEP . Applying
Proposition 2.1 to the auxiliary problem AEP , we complete the proof. �
REMARK 2.2 When f (x, y) := 〈F(y), x − y〉 the gap function defined by (9)
collapses into the one considered by Zhu and Marcotte [22] for V I .
When f (x, y) := 〈F(x), x − y〉 we obtain a gap function associated to MV I (see
[13]). Furthermore, we observe that, if K is a compact set, then H(·, y) may be
assumed to be strictly convex.

3. Descent methods for EP

The gap function approach coupled with the auxiliary problem principle allows
to express EP by means of the constrained minimization of a continuously dif-
ferentiable function. This makes possible to consider exact and inexact line-search
algorithms in order to minimize (4) or (9). If not differently specified, in this section
we will consider the following assumptions:

i) K is a convex set in X;
2i) f (x, y) is a differentiable convex function with respect to x, for

every y ∈ K;
3i) f (x, y) is differentiable on K with respect to y, for every x ∈ K;
4i) f ′

y is continuous on K × K.

Algorithm 3.1

Let g be defined by (4).

Step 1. Let k = 0, y0 ∈ K;
Step 2. yk+1 := yk + tkdk,
where dk := x(yk) − yk , x(yk) is the solution of the problem:

min
x∈K

f (x, yk), (10)

and tk is the solution of the problem

min
0≤t≤1

g(yk + tdk).

Step 3. If ‖yk+1 − yk‖ < µ, for some fixed µ > 0, then STOP, otherwise put
k = k + 1 and go to Step 2.
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It must be proved that dk is a descent direction for g at the point yk.
To this aim it is necessary to make the following further assumption:

〈f ′
x(x, y) + f ′

y(x, y), x − y〉 ≥ 0, ∀(x, y) ∈ K × K. (11)

REMARK 3.1 If f (x, y) := 〈F(x), x − y〉 or f (x, y) := 〈F(y), x − y〉 then (11)
holds provided that ∇F(x) is a positive semidefinite matrix, ∀x ∈ K (see Section
5). It can also be proved that condition (11) holds if f is convex on K with respect
to x and concave on K with respect to y.

PROPOSITION 3.1 Suppose that the hypotheses of the Proposition 2.1 hold and
moreover the assumption (11) is fulfilled. Then d(y) := x(y) − y is a descent
direction for g at y ∈ K, provided that x(y) 
= y.

Proof. We preliminarly observe that y∗ is a solution for EP iff x(y∗) = y∗. Since
x(y) := arg minx∈K f (x, y) and f (·, y) is strictly convex the following variational
inequality holds:

〈f ′
x(x(y), y), z − x(y)〉 > 0, ∀z ∈ K, z 
= x(y). (12)

Putting z := y we obtain 〈f ′
x(x(y), y), x(y) − y〉 < 0.

Taking into account (11) we have

0 > 〈f ′
x(x(y), y), x(y) − y〉 ≥ −〈f ′

y(x(y), y), x(y) − y〉.
By (5) we get 〈g′(y), x(y) − y〉 < 0. �

THEOREM 3.1 Suppose that K is a compact set in X, the assumption (11) is
fulfilled and f (x, y) is a strictly convex function with respect to x, for every y ∈ K.

Then, for any y0 ∈ K the sequence {yk} defined by Algorithm 3.1, belongs to
set K and any accumulation point of {yk} is a solution of EP .

Proof. The convexity of K implies that the sequence {yk} ⊂ K since tk ∈ [0, 1].
Since x(y) is continuous (see the proof of the Proposition 2.2) the function d(x) :=
x(y) − y is continuous on K. It is known (see e.g.[15]) that the map

U(y, d) := {x : x = y + tkd, g(y + tkd) = min
0≤t≤1

g(y + td)}

is closed whenever g is a continuous function. Therefore the algorithmic map
yk+1 = U(yk, d(yk)) is closed, (see e.g. [15]). Zangwill’s convergence theorem
[21] implies that any accumulation point of the sequence {yk} is a solution of EP .�
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A further algorithm can be obtained applying the Algorithm 3.1 to the auxiliary
equilibrium problem AEP .

Algorithm 3.2

Let h be defined by (9).

Step 1. Let k = 0, y0 ∈ K;
Step 2. yk+1 := yk + tkdk, k = 1, . . .

where dk := x(yk) − yk , x(yk) is the solution of the problem:

min
x∈K

[f (x, yk) + H(x, yk)],

and tk is the solution of the problem

min
0≤t≤1

h(yk + tdk).

Step 3. If ‖yk+1 − yk‖ < µ, for some fixed µ > 0, then STOP, otherwise put
k = k + 1 and go to Step 2.

In order to apply Algorithm 3.2 we must replace (11) with the condition

〈f ′
x(x, y) + H ′

x(x, y) + f ′
y(x, y) + H ′

y(x, y), x − y〉 ≥ 0, ∀(x, y) ∈ K × K.

(13)

If we make the assumption ( also considered in [20, 13]):

H ′
x(x, y) + H ′

y(x, y) = 0, ∀(x, y) ∈ K × K, (14)

then (13) obviously collapses to (11).
We observe that assumption (14) is fulfilled in the exact line search algorithm
proposed by Fukushima in [7] which can be obtained putting H(x, y) = 1

2〈M(x −
y), x − y〉, where M is a symmetric positive definite matrix of order n.

The convergence of Algorithm 3.2 is a direct consequence of Theorem 3.1.

THEOREM 3.2 Let H(x, y) : X × X −→ IR be a continuously differentiable
function on K×K, strictly convex with respect to x, for every y ∈ K, and such that
(6), (7) and (8) hold. Suppose that K is a compact set in X and that the assumption
(13) is fulfilled.

Then, for any y0 ∈ K the sequence {yk} defined by Algorithm 3.2, belongs to
the set K and any accumulation point of {yk} is a solution of EP .

Proof. By Proposition 2.2 we obtain that EP is equivalent to AEP . Applying
Theorem 3.1 to the auxiliary problem AEP we complete the proof. �
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Algorithm 3.1 is based on an exact line-search rule: it is possible to consider
the inexact version of the previous method. To this end, we must introduce a
generalization of condition (11):

〈f ′
x(x, y) + f ′

y(x, y), x − y〉 ≥ µ‖x − y‖2, ∀(x, y) ∈ K × K, (15)

where µ > 0 is a suitable constant.

REMARK 3.2 It is possible to prove that (15) is fulfilled if f (x, y) is strongly
convex with respect to x, with modulus 2µ, for every y ∈ K, and concave, with
respect to y, for every x ∈ K.

PROPOSITION 3.2 Suppose that K is a compact set in X and the assumption
(15) is fulfilled for a suitable µ > 0. Then

〈g′(y), d(y)〉 ≤ −µ‖d(y)‖2,

where d(y) := x(y) − y.

Proof. Following the proof of Proposition 3.1, we obtain

0 ≥ 〈f ′
x(x(y), y), x(y) − y〉 ≥ −〈f ′

y(x(y), y), x(y) − y〉 + µ‖x(y) − y‖2.

By (5) we get 〈g′(y), d(y)〉 ≤ −µ‖d(y)‖2. �
Algorithm 3.3.

Step 1. Let y0 be a feasible point, ε be a tolerance factor and β, σ parameters in the
open interval (0, 1). Let k = 0.

Step 2. If g(yk) = 0, then STOP, otherwise go to step 3.

Step 3. Let dk(yk) := x(yk) − yk . Select the smallest nonnegative integer m such
that

g(yk) − g(yk + βmdk) ≥ σβm‖dk‖2,

set αk = βm and yk+1 = yk + αkdk.
If ‖yk+1 − yk‖ < ε, then STOP, otherwise let k = k + 1 and go to step 2.

THEOREM 3.3 Let {yk} be the sequence defined in the Algorithm 3.3. Suppose
that K is a compact set in X, f (x, y) is a strictly convex function with respect to
x, for every y ∈ K, and the assumption (15) is fulfilled for a suitable µ > 0 and
σ < µ/2.

Then, for any x0 ∈ K the sequence {yk} ⊂ K and any accumulation point of
{yk} is a solution of EP .
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Proof. The convexity of K implies that the sequence {yk} ⊂ K, since αk ∈ [0, 1].
The compactness of K ensures that {yk} has at least one accumulation point. Let
{ỹk} be any convergent subsequence of {yk} and y∗ be its limit point.
We will prove that x(y∗) = y∗ so that y∗ is a solution of EP .

Let d(y) := x(y)−y; since x(y) is continuous (see the proof of Proposition 2.1)
it follows that d(y) is continuous; therefore we obtain that d(ỹk) → d(y∗) := d∗
and g(ỹk) → g(y∗) := g∗. By the line search rule we have

g(yk) − g(yk+1) ≥ σαk‖dk‖2,

and this relation remains valid for the subsequence {ỹk}. Therefore,

α̃k‖d(ỹk)‖2 → 0,

for a suitable subsequence {α̃k} ⊆ {αk}.
If α̃k > γ > 0, γ ∈ IR, ∀k ∈ N , then ‖d(ỹk)‖ → 0 so that x(y∗) = y∗.

Otherwise suppose that there exists a subsequence {αk′ } ⊆ {α̃k}, αk′ −→ 0. By the
line search rule we have that

g(ỹk′) − g(ỹk′ + ᾱk′d(ỹk′))

ᾱk′
< σ‖d(ỹk′)‖2, (16)

where ᾱk′ = αk′/β.
Taking the limit in (16) for k′ → ∞, since ᾱk′ → 0 and g is continuously
differentiable, we obtain

−〈g′(y∗), d∗〉 ≤ σ‖d∗‖2. (17)

Recalling Proposition 3.2, we have also

−〈g′(y∗), d∗〉 ≥ µ‖d∗‖2.

Since σ < µ/2, it must be ‖d∗‖ = 0, which implies x(y∗) = y∗. �
The algorithm 3.3 can also be applied for the inexact minimization of the gap

function h defined by (9), provided that the assumption (15) is replaced by:

〈f ′
x(x, y) + H ′

x(x, y) + f ′
y(x, y) + H ′

y(x, y), x − y〉 ≥ µ‖x − y‖2, (18)

∀(x, y) ∈ K × K,

We obtain the following method, appliable also in the case where f (·, y) is convex
but not necessarily strictly convex.

Algorithm 3.4.

Step 1. Let y0 be a feasible point, ε be a tolerance factor and β, σ parameters in the
open interval (0, 1). Let k = 0.
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Step 2. If h(yk) = 0, then STOP, otherwise go to step 3.

Step 3. Let dk(yk) := x(yk) − yk . Select the smallest nonnegative integer m such
that

h(yk) − h(yk + βmdk) ≥ σβm‖dk‖2,

set αk = βm and yk+1 = yk + αkdk.
If ‖yk+1 − yk‖ < ε, then STOP, otherwise let k = k + 1 and go to step 2.

COROLLARY 3.1 Let {yk} be the sequence defined in the Algorithm 3.4. Suppose
that K is a compact set in X and the assumption (18) is fulfilled for a suitable
µ > 0 and σ < µ/2.

Then, for any x0 ∈ K the sequence {yk} ⊂ K and any accumulation point of
{yk} is a solution of EP .

In the next section we will prove that it is possible to drop the compactness assump-
tion on the feasible set K, in the case where the operator f is strongly monotone
and H ′

x(·, y) is Lipschitz continuous on K.

4. Error bounds

In this section we will show that the functions g and h provide a global error bound
for EP in the hypothesis of strong monotonicity of the operator f .

PROPOSITION 4.1 Let f be strongly monotone on K, with modulus b. Then

g(y) ≥ b‖y − y∗‖2, ∀y ∈ K, (19)

where y∗ is the solution of EP .

Proof. Since ∀x ∈ K, g(y) ≥ −f (x, y) then

g(y) ≥ −f (y∗, y) − f (y, y∗) + f (y, y∗) ≥

b‖y − y∗‖2 + f (y, y∗) ≥ b‖y − y∗‖2.

�
In order to extend the previous result to the gap function h, we must consider

the additional assumption of Lipschitz continuity on H ′
x .

PROPOSITION 4.2 Let f be strongly monotone on K, with modulus b, H(·, y) be
convex and H ′

x(·, y) Lipschitz continuous with modulus L < 2b, for every y ∈ K .
Then

h(y) ≥ (b − L/2)‖y − y∗‖2, ∀y ∈ K, (20)

where y∗ is the solution of EP .
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Proof. ∀x, y ∈ K, we have

h(y) ≥ −f (x, y) − H(x, y).

Therefore, for x = y∗,

h(y) ≥ −f (y∗, y) − H(y∗, y) − f (y, y∗) + f (y, y∗) ≥

b‖y − y∗‖2 + f (y, y∗) − H(y∗, y).

We obtain

h(y) ≥ b‖y − y∗‖2 − H(y∗, y). (21)

Since H ′
x(·, y) is Lipschitz continuous, the following inequality holds:

H(y∗, y) = H(y∗, y) − H(y, y) ≤ (L/2)‖y∗ − y‖2, ∀y ∈ K.

Combining the previous inequality with (21), we get

h(y) ≥ (b − L/2)‖y − y∗‖2.

�
The hypothesis of strong monotonicity of f allows to drop the compactness

assumption on the set K, in order to apply the algorithms defined in the previous
section. In fact (19) and (20) guarantee that the sequence {yk}, generated by any of
the above algorithms, is contained in a compact set, taking into account that {g(yk)}
is a strictly decreasing sequence.

In the next section, analysing the particular case of a variational inequality, we
will see that the strong monotonicity of the operator F is a sufficient condition in
order to apply the inexact algorithms 3.3 and 3.4.

5. Applications to variational inequalities and optimization problems

In this section we will consider suitable classes of problems that may be solved
by means of the gap function algorithms; in particular, we will analyse finite di-
mensional variational inequalities: this will allow to obtain further applications to
optimization problems.

Consider the variational inequality:

find y∗ ∈ K s.t. 〈F(y∗), x − y∗〉 ≥ φ(y∗) − φ(x), ∀x ∈ K, (V I (F, φ))

where F : X −→ IRn, K is a convex set in X, φ : X −→ IR.
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If we define f (x, y) := 〈F(y), x − y〉 − φ(y) + φ(x) then EP is equivalent to
V I (F, φ).
When the operator F is monotone and φ is a convex function, V I (F, φ) is equiv-
alent to the following variational inequality:

find y∗ ∈ K s.t. 〈F(x), x − y∗〉 ≥ φ(y∗) − φ(x) ∀x ∈ K. (MV I (F, φ))

When φ is a constant function on K, then MV I (F, φ) collapses to MV I .

PROPOSITION 5.1 Let φ : X −→ IR be a convex function on K and F be a
continuous monotone operator on K. Then y∗ is a solution of V I (F, φ) iff it is a
solution of MV I (F, φ).

In order to apply the algorithms, developed in the previous section, to variational
inequality problems, we must deepen the analysis of the assumptions (11), (13) and
(15).

PROPOSITION 5.2 Suppose that F is continuously differentiable on K, φ is a
differentiable convex function on K and

i) f (x, y) = 〈F(x), x − y〉 + φ(x) − φ(y) or
ii) f (x, y) := 〈F(y), x − y〉 + φ(x) − φ(y),
then
1) if F is monotone on K, then (11) holds;
2) if F is strongly monotone on K, with modulus µ, then (15) holds .

Proof. In the case (i), we have

fx(x, y) + fy(x, y) = ∇F(x)(x − y) + φ′(x) − φ′(y),

while, in the case (ii)

fx(x, y) + fy(x, y) = ∇F(y)(x − y) + φ′(x) − φ′(y).

It is known [18] that F is monotone on K iff ∇F(x) is a positive semidefinite
matrix, ∀x ∈ K, and that F is strongly monotone on K, with modulus µ, iff

〈∇F(y)d, d〉 ≥ µ‖d‖2, ∀d ∈ IRn,∀y ∈ K.

Putting d := x − y, we prove the statement. �

We observe that, if F is continuously differentiable and monotone (resp. strongly
monotone) on K and φ is a differentiable strictly convex function on K, then
Algorithm 3.1 (resp. Algorithm 3.3) can be applied for solving V I (F, φ).

For the classic V I , obtained by putting φ(x) = 0,∀x ∈ K, we can apply
Algorithm 3.2: actually, since H(·, y) is a strictly convex function, ∀y ∈ K, then,
in Theorem 3.1, f (·, y) can be assumed to be convex.
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Concerning condition (13), we observe that it is fulfilled when F is monotone
on K provided that

〈H ′
x(x, y) + H ′

y(x, y), x − y〉 ≥ 0, ∀(x, y) ∈ K × K.

As already observed, if H fulfils the assumption:

H ′
x(x, y) + H ′

y(x, y) = 0, ∀(x, y) ∈ K × K, (22)

then it is enough to suppose that F is monotone on K.

Similarly, the general algorithms can be applied to MV I (F, φ); Algorithm
3.1 (resp. 3.3) can be applied, in the hypothesis of monotonicity (resp. strong
monotonicity) of the operator F , with the further additional condition:

f (x, y) := 〈F(x), x − y〉 − φ(y) + φ(x) is a strictly convex function on K,
with respect to x, ∀y ∈ K.

Algorithms 3.2 and 3.4 require the strict convexity (with respect to x) of the func-
tion

f (x, y) := 〈F(x), x − y〉 + H(x, y) − φ(y) + φ(x),

so that they can be applied in the case where the function 〈F(x), x − y〉 − φ(y) +
φ(x) is convex but not necessarily strictly convex (for example when F(x) = Ax,
with A positive semidefinite matrix of order n and φ(x) = 0, for x ∈ K).

As regards the applications to optimization problems, it is known (see e.g. [4])
that V I (∇ψ,φ) represents the first order optimality condition of the following
constrained extremum problem:

min
x∈K

[ψ(x) + φ(x)] (P )

where ψ : X −→ IR is a continuously differentiable convex function on the
convex set K, φ : X −→ IR is a continuous strongly convex function on K having
finite directional derivative φ′(x; x − z), ∀x, z ∈ K. For completeness we report
the statement that proves the equivalence between (P ) and the related variational
inequalities.

PROPOSITION 5.3 y∗ is a solution of P iff it a solution of V I (∇ψ,φ) or, equiv-
alently, of MV I (∇ψ,φ).

Proof. See e.g. [1]. �
The previous proposition allows to apply the proposed algorithms to V I (∇ψ,φ)

and to MV I (∇ψ,φ) in order to solve the optimization problem P , if we assume
that φ is differentiable on K.
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6. Concluding remarks

We have extended the gap function theory to equilibrium problems. This has al-
lowed us to consider descent methods for solving EP . We have shown that these
methods, that could be stated directly for the original problem, must be applied to
an equivalent auxiliary equilibrium problem in order to achieve the convergence
under weaker assumptions on the given problem.

Further topics of research in this field are: the connections with the proximal
methods for equilibrium problems [6, 17]; the methods based on an unconstrained
gap function [20]; the extensions to vector equilibrium problems (see e.g. [10]), the
analysis in the image space and the role of the separation techniques [9].
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